Classification of Broadleaf and Grass Weeds Using Gabor Wavelets and an Artificial Neural Network

نویسندگان

  • L. Tang
  • L. Tian
  • B. L. Steward
چکیده

A texture–based weed classification method was developed. The method consisted of a low–level Gabor wavelets–based feature extraction algorithm and a high–level neural network–based pattern recognition algorithm. This classification method was specifically developed to explore the feasibility of classifying weed images into broadleaf and grass categories for spatially selective weed control. In this research, three species of broadleaf weeds (common cocklebur, velvetleaf, and ivyleaf morning glory) and two grasses (giant foxtail and crabgrass) that are common in Illinois were studied. After processing 40 sample images with 20 samples from each class, the results showed that the method was capable of classifying all the samples correctly with high computational efficiency, demonstrating its potential for practical implementation under real–time constraints.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Texture-Based Weed Classification Using Gabor Wavelets and Neural Network for Real-time Selective Herbicide Applications

A novel texture-based weed classification method was developed. The method comprised a low-level Gabor wavelets-based feature extraction algorithm and a high-level neural network-based pattern recognition algorithm. The design strategy simulated the function of the human visual system, which uses low-level receptors for early stage vision processing and high-level cognition for pattern recognit...

متن کامل

Estimation of Reference Evapotranspiration Using Artificial Neural Network Models and the Hybrid Wavelet Neural Network

Estimation of evapotranspiration is essential for planning, designing and managing irrigation and drainage schemes, as well as water resources management. In this research, artificial neural networks, neural network wavelet model, multivariate regression and Hargreaves' empirical method were used to estimate reference evapotranspiration in order to determine the best model in terms of efficienc...

متن کامل

Multi-View Face Detection in Open Environments using Gabor Features and Neural Networks

Multi-view face detection in open environments is a challenging task, due to the wide variations in illumination, face appearances and occlusion. In this paper, a robust method for multi-view face detection in open environments, using a combination of Gabor features and neural networks, is presented. Firstly, the effect of changing the Gabor filter parameters (orientation, frequency, standard d...

متن کامل

A combined Wavelet- Artificial Neural Network model and its application to the prediction of groundwater level fluctuations

Accurate groundwater level modeling and forecasting contribute to civil projects, land use, citys planning and water resources management. Combined Wavelet-Artificial Neural Network (WANN) model has been widely used in recent years to forecast hydrological and hydrogeological phenomena. This study investigates the sensitivity of the pre-processing to the wavelet type and decomposition level in ...

متن کامل

Classification of Iranian traditional musical modes (DASTGÄH) with artificial neural network

The concept of Iranian traditional musical modes, namely DASTGÄH, is the basis for the traditional music system. The concept introduces seven DASTGÄHs. It is not an easy process to distinguish these modes and such practice is commonly performed by an experienced person in this field. Apparently, applying artificial intelligence to do such classification requires a combination of the basic infor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003